Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
PROPER1(from1(X)) -> FROM1(proper1(X))
ACTIVE1(from1(X)) -> FROM1(s1(X))
TOP1(mark1(X)) -> PROPER1(X)
ACTIVE1(2nd1(cons2(X, X1))) -> 2ND1(cons12(X, X1))
PROPER1(cons12(X1, X2)) -> PROPER1(X2)
ACTIVE1(from1(X)) -> FROM1(active1(X))
S1(mark1(X)) -> S1(X)
PROPER1(2nd1(X)) -> PROPER1(X)
ACTIVE1(2nd1(X)) -> ACTIVE1(X)
ACTIVE1(cons12(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(2nd1(X)) -> 2ND1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(s1(X)) -> S1(proper1(X))
CONS12(ok1(X1), ok1(X2)) -> CONS12(X1, X2)
2ND1(mark1(X)) -> 2ND1(X)
S1(ok1(X)) -> S1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
CONS12(mark1(X1), X2) -> CONS12(X1, X2)
ACTIVE1(from1(X)) -> CONS2(X, from1(s1(X)))
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> CONS2(active1(X1), X2)
ACTIVE1(cons12(X1, X2)) -> CONS12(active1(X1), X2)
ACTIVE1(cons12(X1, X2)) -> CONS12(X1, active1(X2))
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
FROM1(mark1(X)) -> FROM1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons12(X1, X2)) -> CONS12(proper1(X1), proper1(X2))
2ND1(ok1(X)) -> 2ND1(X)
TOP1(ok1(X)) -> ACTIVE1(X)
PROPER1(cons12(X1, X2)) -> PROPER1(X1)
ACTIVE1(from1(X)) -> S1(X)
ACTIVE1(s1(X)) -> S1(active1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
PROPER1(s1(X)) -> PROPER1(X)
TOP1(ok1(X)) -> TOP1(active1(X))
PROPER1(from1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
ACTIVE1(from1(X)) -> ACTIVE1(X)
PROPER1(2nd1(X)) -> 2ND1(proper1(X))
FROM1(ok1(X)) -> FROM1(X)
ACTIVE1(2nd1(cons2(X, X1))) -> CONS12(X, X1)
ACTIVE1(cons12(X1, X2)) -> ACTIVE1(X1)
CONS12(X1, mark1(X2)) -> CONS12(X1, X2)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
PROPER1(from1(X)) -> FROM1(proper1(X))
ACTIVE1(from1(X)) -> FROM1(s1(X))
TOP1(mark1(X)) -> PROPER1(X)
ACTIVE1(2nd1(cons2(X, X1))) -> 2ND1(cons12(X, X1))
PROPER1(cons12(X1, X2)) -> PROPER1(X2)
ACTIVE1(from1(X)) -> FROM1(active1(X))
S1(mark1(X)) -> S1(X)
PROPER1(2nd1(X)) -> PROPER1(X)
ACTIVE1(2nd1(X)) -> ACTIVE1(X)
ACTIVE1(cons12(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(2nd1(X)) -> 2ND1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(s1(X)) -> S1(proper1(X))
CONS12(ok1(X1), ok1(X2)) -> CONS12(X1, X2)
2ND1(mark1(X)) -> 2ND1(X)
S1(ok1(X)) -> S1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
CONS12(mark1(X1), X2) -> CONS12(X1, X2)
ACTIVE1(from1(X)) -> CONS2(X, from1(s1(X)))
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> CONS2(active1(X1), X2)
ACTIVE1(cons12(X1, X2)) -> CONS12(active1(X1), X2)
ACTIVE1(cons12(X1, X2)) -> CONS12(X1, active1(X2))
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
FROM1(mark1(X)) -> FROM1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons12(X1, X2)) -> CONS12(proper1(X1), proper1(X2))
2ND1(ok1(X)) -> 2ND1(X)
TOP1(ok1(X)) -> ACTIVE1(X)
PROPER1(cons12(X1, X2)) -> PROPER1(X1)
ACTIVE1(from1(X)) -> S1(X)
ACTIVE1(s1(X)) -> S1(active1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
PROPER1(s1(X)) -> PROPER1(X)
TOP1(ok1(X)) -> TOP1(active1(X))
PROPER1(from1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
ACTIVE1(from1(X)) -> ACTIVE1(X)
PROPER1(2nd1(X)) -> 2ND1(proper1(X))
FROM1(ok1(X)) -> FROM1(X)
ACTIVE1(2nd1(cons2(X, X1))) -> CONS12(X, X1)
ACTIVE1(cons12(X1, X2)) -> ACTIVE1(X1)
CONS12(X1, mark1(X2)) -> CONS12(X1, X2)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 8 SCCs with 18 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS12(ok1(X1), ok1(X2)) -> CONS12(X1, X2)
CONS12(mark1(X1), X2) -> CONS12(X1, X2)
CONS12(X1, mark1(X2)) -> CONS12(X1, X2)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONS12(X1, mark1(X2)) -> CONS12(X1, X2)
Used argument filtering: CONS12(x1, x2) = x2
ok1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS12(ok1(X1), ok1(X2)) -> CONS12(X1, X2)
CONS12(mark1(X1), X2) -> CONS12(X1, X2)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONS12(ok1(X1), ok1(X2)) -> CONS12(X1, X2)
Used argument filtering: CONS12(x1, x2) = x2
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS12(mark1(X1), X2) -> CONS12(X1, X2)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONS12(mark1(X1), X2) -> CONS12(X1, X2)
Used argument filtering: CONS12(x1, x2) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S1(ok1(X)) -> S1(X)
S1(mark1(X)) -> S1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
S1(mark1(X)) -> S1(X)
Used argument filtering: S1(x1) = x1
ok1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S1(ok1(X)) -> S1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
S1(ok1(X)) -> S1(X)
Used argument filtering: S1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FROM1(mark1(X)) -> FROM1(X)
FROM1(ok1(X)) -> FROM1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
FROM1(ok1(X)) -> FROM1(X)
Used argument filtering: FROM1(x1) = x1
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FROM1(mark1(X)) -> FROM1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
FROM1(mark1(X)) -> FROM1(X)
Used argument filtering: FROM1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
Used argument filtering: CONS2(x1, x2) = x2
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
Used argument filtering: CONS2(x1, x2) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
2ND1(mark1(X)) -> 2ND1(X)
2ND1(ok1(X)) -> 2ND1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
2ND1(ok1(X)) -> 2ND1(X)
Used argument filtering: 2ND1(x1) = x1
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
2ND1(mark1(X)) -> 2ND1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
2ND1(mark1(X)) -> 2ND1(X)
Used argument filtering: 2ND1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(from1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons12(X1, X2)) -> PROPER1(X2)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(2nd1(X)) -> PROPER1(X)
PROPER1(cons12(X1, X2)) -> PROPER1(X1)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons12(X1, X2)) -> PROPER1(X2)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(cons12(X1, X2)) -> PROPER1(X1)
Used argument filtering: PROPER1(x1) = x1
s1(x1) = x1
from1(x1) = x1
cons2(x1, x2) = cons2(x1, x2)
cons12(x1, x2) = cons12(x1, x2)
2nd1(x1) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(from1(X)) -> PROPER1(X)
PROPER1(2nd1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(2nd1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
s1(x1) = x1
from1(x1) = x1
2nd1(x1) = 2nd1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(from1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(from1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
s1(x1) = x1
from1(x1) = from1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(s1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(s1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(2nd1(X)) -> ACTIVE1(X)
ACTIVE1(cons12(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(from1(X)) -> ACTIVE1(X)
ACTIVE1(cons12(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(s1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(cons12(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(cons12(X1, X2)) -> ACTIVE1(X1)
Used argument filtering: ACTIVE1(x1) = x1
2nd1(x1) = x1
cons12(x1, x2) = cons12(x1, x2)
cons2(x1, x2) = x1
from1(x1) = x1
s1(x1) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(2nd1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(from1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(s1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
2nd1(x1) = x1
cons2(x1, x2) = x1
from1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(2nd1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(from1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(from1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
2nd1(x1) = x1
cons2(x1, x2) = x1
from1(x1) = from1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(2nd1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
Used argument filtering: ACTIVE1(x1) = x1
2nd1(x1) = x1
cons2(x1, x2) = cons1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(2nd1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(2nd1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
2nd1(x1) = 2nd1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
TOP1(ok1(X)) -> TOP1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
TOP1(ok1(X)) -> TOP1(active1(X))
Used argument filtering: TOP1(x1) = x1
ok1(x1) = ok1(x1)
active1(x1) = x1
mark1(x1) = mark
proper1(x1) = proper
2nd1(x1) = x1
cons12(x1, x2) = x2
cons2(x1, x2) = x2
from1(x1) = x1
s1(x1) = x1
Used ordering: Quasi Precedence:
ok_1 > [mark, proper]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
TOP1(mark1(X)) -> TOP1(proper1(X))
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
TOP1(mark1(X)) -> TOP1(proper1(X))
Used argument filtering: TOP1(x1) = x1
mark1(x1) = mark1(x1)
proper1(x1) = x1
2nd1(x1) = x1
cons2(x1, x2) = x1
from1(x1) = x1
s1(x1) = x1
cons12(x1, x2) = cons12(x1, x2)
ok1(x1) = ok
Used ordering: Quasi Precedence:
cons1_2 > mark_1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(2nd1(cons12(X, cons2(Y, Z)))) -> mark1(Y)
active1(2nd1(cons2(X, X1))) -> mark1(2nd1(cons12(X, X1)))
active1(from1(X)) -> mark1(cons2(X, from1(s1(X))))
active1(2nd1(X)) -> 2nd1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(from1(X)) -> from1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(cons12(X1, X2)) -> cons12(active1(X1), X2)
active1(cons12(X1, X2)) -> cons12(X1, active1(X2))
2nd1(mark1(X)) -> mark1(2nd1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
from1(mark1(X)) -> mark1(from1(X))
s1(mark1(X)) -> mark1(s1(X))
cons12(mark1(X1), X2) -> mark1(cons12(X1, X2))
cons12(X1, mark1(X2)) -> mark1(cons12(X1, X2))
proper1(2nd1(X)) -> 2nd1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(from1(X)) -> from1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(cons12(X1, X2)) -> cons12(proper1(X1), proper1(X2))
2nd1(ok1(X)) -> ok1(2nd1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
from1(ok1(X)) -> ok1(from1(X))
s1(ok1(X)) -> ok1(s1(X))
cons12(ok1(X1), ok1(X2)) -> ok1(cons12(X1, X2))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.